Spectral Flexibility of Symplectic Manifolds T 2 ×
نویسنده
چکیده
We consider Riemannian metrics compatible with the natural symplectic structure on T 2×M , where T 2 is a symplectic 2-Torus and M is a closed symplectic manifold. To each such metric we attach the corresponding Laplacian and consider its first positive eigenvalue λ1. We show that λ1 can be made arbitrarily large by deforming the metric structure, keeping the symplectic structure fixed. The conjecture is that the same is true for any symplectic manifold of dimension ≥ 4. We reduce the general conjecture to a purely symplectic question. MSC: 35P15; 53D05; 53C17
منابع مشابه
A ug 2 00 5 Spectral Flexibility of the Symplectic Manifold T 2 ×
We consider Riemannian metrics compatible with the symplectic structure on T 2 ×M , where T 2 is a symplectic 2-Torus and M is a closed symplectic manifold. To each such metric we attach the corresponding Laplacian and consider its first positive eigenvalue λ1. We show that λ1 can be made arbitrarily large by deforming the metric structure, keeping the symplectic structure fixed. This extends a...
متن کاملSymplectic actions of two tori on four manifolds
We classify symplectic actions of 2-tori on compact, connected symplectic 4-manifolds, up to equivariant symplectomorphisms. This extends results of Atiyah, Guillemin–Sternberg, Delzant and Benoist. The classification is in terms of a collection of invariants, which are invariants of the topology of the manifold, of the torus action and of the symplectic form. We construct explicit models of su...
متن کاملS ep 2 00 5 Spectral Flexibility of the Symplectic Manifold T 2 ×
We consider Riemannian metrics compatible with the symplectic structure on T 2 ×M , where T 2 is a symplectic 2-Torus and M is a closed symplectic manifold. To each such metric we attach the corresponding Laplacian and consider its first positive eigenvalue λ1. We show that λ1 can be made arbitrarily large by deforming the metric structure, keeping the symplectic structure fixed. This extends a...
متن کاملLagrangian Embeddings, Maslov Indexes and Integer Graded Symplectic Floer Cohomology
We define an integer graded symplectic Floer cohomology and a spectral sequence which are new invariants for monotone Lagrangian sub-manifolds and exact isotopies. Such an integer graded Floer cohomology is an integral lifting of the usual Floer-Oh cohomology with ZΣ(L) grading. As one of applications of the spectral sequence, we offer an affirmative answer to an Audin’s question for oriented, ...
متن کاملSymplectic fillability of toric contact manifolds
According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than π are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and most of them are strongly symplectically fillable. The proof is based on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007